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- Detecting GWs offered a profound confirmation
of general relativity

- Using GW observations to test GR to increasing

porec
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ion, we hope to obtain clues of new physics,

timately prove a more general theory



Testing GR with GW observations: a manifesto

* Consistency: a useful sanity check, but hard to interpret statistically. P values are
possible with much work. But would we ever believe an inconsistent result’?




the graphical model of parameter inference
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GW150914 tests of “consistency”: partial waveforms (1)

Inspiral vs merger-ringdown consistency
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GW150914 tests of “consistency”: partial waveforms (1)

Inspiral vs merger-ringdown consistency ‘
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answers question: it we compute the preferred
binary parameters from two nonoverlapping sections
of the signal, are the resulting estimates “consistent”™?
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GW150914 tests of “consistency”: partial waveforms (2)

single quasi-normal mode
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GW150914 tests of “consistency”: partial waveforms (2)

single quasi-normal mode
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GW150914 test of “consistency”: full-waveform residual

Strain (10~%%)
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of data residual after subtracting
best-fit GW150914 waveform

SNRyes < 7.3 = FF > 0.96

(for violations not absorbed
by physical parameters)



GW150914 test of “consistency”: full-waveform residual

Strain (10~%%)
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Testing GR with GW observations: a manifesto

* Consistency: useful sanity checks, but hard to interpret statistically. P values are
possible with much work. But would we ever believe an inconsistent result’?

 Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass)
are useful proxies for increasing resolving power, but again hard to interpret.
Apparent violations may focus our search for new physics.




GW150914 parametric test of GW propagation: graviton mass
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GW150914 parametric test of GW propagation: graviton mass
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GW150914 test of generation and binary dynamics:

frequency-domain PN coefficients
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GW150914 test of generation and binary dynamics:

frequency-domain PN coefficients
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For comparison: pulsar-timing tests of GR concern
ohysical parameters, but also have weak interpretations
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Testing GR with GW observations: a manifesto

* Consistency: useful sanity checks, but hard to interpret statistically. P values are
possible with much work. But would we ever believe an inconsistent result’?

 Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass)
are useful proxies for increasing resolving power, but again hard to interpret.
Apparent violations may focus our search for new physics.

* Alternative theories: new physics will be established by model comparison of GR
with fully predictive alternative theories. It is a problem to establish Bayesian priors

for altema}ive gravity, and for altemative—gravi{y parameters.

same as detection other measurements, particle physics, astroparticles




GW150914 test of polarization
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GW150914 test of polarization

Tensor wavelets. ]

answers question: is there evidence for

no discrimination P(S‘S)

between Sand T P(3|T)

<A coherent, chirp-like quadrupolar radiation
‘N vs coherent, chirp-like purely scalar radiation®



Establishing alternative theories
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Establishing alternative theories
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new physics follows from establishing an anomaly:
we need to obtain convincing evidence that the data
prefers an alternative theory of gravity over GR
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Alternative theories: new
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CUS our search for new physics.

pohysics will be established by model comparison of GR
Ive theories. It is a problem to establish Bayesian priors

for alternative gravity, and -

Size of effects: detection

or alternative-gravity parameters.

SNR determines the magnitude of detectable waveform

anomalies. 1% LIGO, up to 10 for LISA and future ground-based detectors.



How well can we hope to do”? [MV, PRD 86, 2012]
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Testing GR with GW observations: a manifesto

Consistency: useful sanity checks, hard to interpret statistically. P values are
possible with much work. But would we ever believe an inconsistent result’?

Parametric tests: constraints on G

R “constants” (

PN coefficients, graviton mass)

are useful proxies for increasing resolving power, but again hard to interpret.
Apparent violations may focus our search for new physics.

Alternative theories: new physics will be established by model comparison of GR

with fully predictive alternative theories. It is a problem to establish Bayesian priors
for alternative gravity, and for alternative-gravity parameters.

Size of effects: detection SNR determines the magnitude of detectable waveform
anomalies: 1% LIGO, up to 10 for LISA and future ground-based detectors.

Systematics: beyond statistical-significance arguments, we will need a solid chain
of evidence before we claim GR is violated.




Control of systematics
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Testing GR with GW observations: recommendations

* Consistency: useful sanity checks, hard to interpret statistically. P values are

Sut would we ever believe an inconsistent result?

possible with much work.

 Parametric tests: constraints on GR “constants” (PN coefficients, graviton mass)
are useful proxies for increasing resolving power, but again hard to interpret.
Apparent violations may focus our search for new physics.

\. ¢ Alternative theories: new

with fully predictive alterna

pohysics will be established by model comparison of GR
Ive theories. It is a problem to establish Bayesian priors

for alternative gravity, and -

e Size of effects: detection

or alternative-gravity parameters.

SNR determines the magnitude of detectable waveform

anomalies: 1% LIGO, up to 10 for LISA and future ground-based detectors.

* Systematics: beyond statistical-significance arguments, we will need a solid chain
of evidence before we claim GR is violated.




&+ Size of effects: detection
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